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ABSTRACT

An approach for downscaling daily precipitation extremes using historical analogs is applied to simulations

from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The method employs a multistep

procedure in which the occurrence of extreme precipitation on a given target day is determined on the basis of

the probability of extreme precipitation on that day’s closest historical analogs. If extreme precipitation is

expected, daily precipitation observations associated with the historical analogs are used to approximate

precipitation amounts on the target day. By applying the analogmethod to historical simulations, the ability of

the CMIP5 models to simulate synoptic weather patterns associated with extreme precipitation is assessed.

Differences between downscaled and observed precipitation extremes are investigated by comparing the

precipitation frequency distributions for a subset of rarely selected extreme analog days with those for all

observed days with extreme precipitation. A supplemental composite analysis of the synoptic weather pat-

terns on these rarely selected analog days is utilized to elucidate the meteorological factors that contribute to

such discrepancies. Overall, the analog method as applied to CMIP5 simulations yields realistic estimates of

historical precipitation extremes, with return-period precipitation biases that are comparable in magnitude to

those obtained from dynamically downscaled simulations. The analysis of rarely selected analog days reveals

that precipitation amounts on these days are generally larger than precipitation amounts on all days with

extreme precipitation, leading to an underestimation of return-period precipitation amounts at many stations.

Furthermore, the synoptic composite analysis reveals that tropical cyclones are a common feature on these

rarely selected analog days.

1. Introduction

Extreme precipitation and flooding can have pro-

found impacts on public infrastructure, agriculture, and

human health. During the 1985–2014 period, nonstorm

surge flooding was responsible for roughly $8 billion in

damage (adjusted to 2014 inflation) and 80 fatalities per

year in the United States. Numerous studies have docu-

mented significant increases in the frequency and magni-

tude of extreme precipitation in the central and eastern

United States since the mid- to late-twentieth century

(Kunkel et al. 1999, 2013; Kunkel 2003; DeGaetano 2009;

Karl et al. 2009; Groisman et al. 2012; Heineman 2012;

Villarini et al. 2013). According to the most recent as-

sessment from the Intergovernmental Panel on Climate

Change (IPCC 2014), such trends are expected to continue

throughout the twenty-first century.

Although the IPCC report expresses high confidence

in precipitation extremes becoming more frequent and

intense in midlatitude continental regions, these pre-

dictions are based on global climate models (GCMs)

that provide insufficient detail at the spatial scales

relevant to hydrometeorological extremes (Christensen

and Christensen 2003; Boé et al. 2006; Maraun et al.

2010). Most GCMs currently operate at spatial

resolutions that are too coarse to adequately resolve

certain orographic features and atmospheric pro-

cesses that influence precipitation (Benestad 2010;

Eden and Widmann 2014). As a result, GCMs may

significantly underestimate precipitation over moun-

tainous terrain and in areas where convective pre-

cipitation is nonnegligible. Furthermore, because

simulated precipitation amounts actually represent

precipitation averaged across an entire grid cell,

GCMs also filter out small-scale spatial heterogene-

ities in precipitation. Since climate change impact

assessments typically focus on point locations or

finescale grids within a limited geographic domain,

downscaling is required to bridge the gap between

model resolution and impact area (Wilby and Wigley

1997; Murphy 1999; Wilby et al. 2004; Haylock et al.
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2006; Benestad 2010; Maraun et al. 2010; Tryhorn and

DeGaetano 2011).

Various methods for downscaling meteorological

surface variables from GCMs have been explored in

recent years. One such approach, originally proposed by

Lorenz (1969) for operational forecasting applications,

uses the concept of historical analogs. Analog methods

are a subset of statistical downscaling techniques that

estimate local meteorological conditions on a given

target day on the basis of local observations associated

with historical large-scale weather patterns that are

similar to the large-scale weather pattern on the target

day. In broad terms, statistical downscaling utilizes

empirical relationships between large-scale atmospheric

variables (predictors) and local surface variables (pre-

dictands), whereas dynamical downscaling involves

running a nested high-resolution model with initial condi-

tions and boundary values specified by an atmosphere–

oceanGCM(AOGCM;Castellano andDeGaetano 2016).

There is little evidence that either type yields superior re-

sults, but statistical downscaling is often preferred over

dynamical downscaling because of its lower computational

demands (Tryhorn and DeGaetano 2011).

Despite their simplicity, analog methods have been

shown to perform as well as more sophisticated down-

scaling techniques and, at the very least, can provide a

good benchmark for comparison (Zorita and von Storch

1999; Gutiérrez et al. 2013). Unlike statistical methods

that are based on linear regression [e.g., the Statistical

Downscaling Model (SDSM); Wilby et al. 2002], analog

methods can easily be applied in situations in which the

predictand is not normally distributed (Matulla et al.

2008). This is especially advantageous for downscaling

variables such as daily precipitation. In addition, from

an operational perspective, historical analogs are still

used as input when forecasting extreme hydrometeoro-

logical events and assessing the potential for flooding.

Nevertheless, it is worth noting that analog methods

have two fundamental limitations. First, like all statis-

tical downscaling approaches, analog methods operate

under the assumption that the empirical relationships

between predictors and predictands remain stable over

time (Benestad 2010; Gutiérrez et al. 2013). Second,

because historical observations serve as the source for

the predictand estimates, analog methods cannot pro-

duce values outside the range of the existing climate

record (Imbert and Benestad 2005).

Analog methods generally require three components:

1) selection of predictors, 2) a procedure for finding

historical analogs on the basis of similarities in the pre-

dictor fields, and 3) a procedure for estimating pre-

dictand values. Although the selection of predictors

is inherently somewhat subjective, it is important to

choose variables that are physically linked to and/or are

strongly correlated with the predictand, in addition to

being adequately simulated by the GCMs (Wetterhall

et al. 2005). For example, previous studies recommend

using predictors that represent the large-scale atmo-

spheric circulation and/or low-level moisture fields when

downscaling precipitation (Matulla et al. 2008). Once

the predictors have been chosen, historical analog pat-

terns can be found via principal component analysis or

direct comparison of predictor fields between target

days and all possible analog days. The first approach

reduces the dimensionality of atmospheric states by

projecting anomalies or standardized anomalies of the

predictor fields onto the leading spatial patterns of

variance (e.g., Zorita and von Storch 1999; Wetterhall

et al. 2005; Matulla et al. 2008). The second approach

identifies suitable analogs by computing a simple dis-

similarity measure (such as standardized pseudo-

Euclidean distance) between predictor fields on target

days and candidate analog days (e.g., Ribalaygua et al.

2013; Castellano and DeGaetano 2016). Since no single

historical weather pattern is ever likely to be identical

to a given target weather pattern (van den Dool 1994),

the predictand value at a specific location or grid cell is

often estimated as a linear combination of the observed

values associated with the most similar analog patterns

(e.g., van den Dool et al. 2003; Hidalgo et al. 2008;

Brekke et al. 2013).

Most analog approaches that previously have been

used to downscale daily precipitation, such as the bias-

corrected constructed analog method (Hidalgo et al.

2008; Brekke et al. 2013), unfortunately significantly

underestimate the magnitude of extreme precipitation

in the central and eastern United States (Gutmann et al.

2014). Using an analog search algorithm that is similar

to the one employed by Ribalaygua et al. (2013),

Castellano and DeGaetano (2016) proposed a multistep

procedure for downscaling daily precipitation extremes

from historical analogs. First, the occurrence of extreme

precipitation on a given target day was determined on

the basis of the observed probability of extreme pre-

cipitation on that day’s closest historical analog days. If

extreme precipitation occurred on the selected analog

day(s), the historical precipitation observations associ-

ated with the analog day(s) were then used to ascribe

precipitation amounts on the corresponding target day.

The performance of this analog method was tested

using National Centers for Environmental Prediction–

National Center for Atmospheric Research (NCEP–

NCAR) reanalysis data (Kalnay et al. 1996) for a 50-yr

trial period (1961–2010). Overall, the approach yielded

encouraging results, with return-period precipitation

biases that compared favorably to those produced by
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dynamically downscaled historical simulations from the

North American Regional Climate Change Assessment

Program (NARCCAP; Mearns et al. 2009). In terms of

predicting the occurrence of extreme precipitation, the

analog method presented a notable improvement over

using climatological probabilities and performed similar

to an analog approach developed byGao et al. (2014) that

considered widespread heavy-precipitation events only.

This study applies the analog method developed by

Castellano and DeGaetano (2016) to historical simula-

tions from phase 5 of the Coupled Model Intercompar-

ison Project (CMIP5; Taylor et al. 2012) as opposed to

reanalysis data. Such an analysis is necessary to ascertain

the ability of the CMIP5 GCMs to simulate the types

and frequency of synoptic weather patterns that are as-

sociated with extreme precipitation and therefore to

determine whether the analog method can ultimately be

used to downscale future precipitation extremes. Sec-

tion 2 will provide an overview of the data and method

used to downscale extreme precipitation from the

CMIP5 simulations. Section 3 will compare downscaled

precipitation extremes estimated from the historical

CMIP5 simulations with those computed from historical

observations. A subsequent analysis of rarely selected

analog days will be presented to explain discrepancies

between downscaled and observed precipitation ex-

tremes. Last, section 4 will conclude with a brief sum-

mary of significant findings and a discussion of the

potential advantages and drawbacks of this downscaling

approach.

2. Method

a. Observed precipitation extremes

The geographical domain for this study consists of the

157 Global Historical Climatology Network (GHCN)

stations selected by Castellano and DeGaetano (2016)

in their verification paper (Fig. 1). Following the

methods of Wilks and Cember (1993) and Castellano

and DeGaetano (2016), partial duration series (PDS) of

the largest independent daily precipitation events at

each station were constructed for the 1961–2010 period

(the pool of candidate historical analog days) and the

1970–99 period. Next, precipitation amounts corre-

sponding to 2-, 5-, 10-, 25-, 50-, and 100-yr return periods

were computed for the 1970–99 period using the re-

gionalized L-moments approach outlined in Castellano

and DeGaetano (2016). Homogeneous regions were

determined by applying a Kolmogorov–Smirnov test

(DeGaetano 1998) to evaluate the likeness of the PDS

distributions at different pairs of stations. A generalized

extreme-value distribution was subsequently fit to each

station’s PDS, with regionally averaged shape and scale

parameters specified for all stations in the same region.

The National Weather Service is currently using

L-moments regional frequency analysis (Hosking and

Wallis 1997) to create a revised precipitation frequency

atlas for the United States (Perica et al. 2013). Although

Wilks (1993) found that a station-based beta-P method

best captured the extreme right tail of precipitation

events in the northeasternUnited States, the parameters

of the beta-P distribution are very sensitive to outlier

values in the PDS sample. This sensitivity leads to

large spatial disparities in precipitation estimates for

return periods that exceed the length of the data record.

Furthermore, as Fig. 2 illustrates, this sensitivity intro-

duces a high degree of uncertainty in the return-period

estimates at certain stations.

The analysis was restricted to the 1970–99 period to

allow for direct comparison with the dynamically down-

scaledNARCCAP simulations.Although theNARCCAP

simulations were run using AOGCMs from the previous

generation of IPCC models (CMIP3; Meehl et al. 2007),

dynamically downscaled simulations from the Co-

ordinatedRegionalDownscalingExperiment (CORDEX;

Jones et al. 2011), which uses CMIP5models as the driving

AOGCMs, were not initially available. Because comput-

ing 100-yr return-period precipitation amounts on the basis

of a 30-yr period involves extrapolation well beyond the

length of the data record, the authors examined the re-

liability of these return-period estimates by comparing

them with return-period values computed from the longer

1950–2005 period. Differences between the 1970–99 and

1950–2005 return-period estimates were found to be

FIG. 1. Map showing the locations of the 157 GHCN stations

used in this study. The different colors designate the five station

groups used to assign analog precipitation amounts.
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negligible at most stations. Last, 90% confidence intervals

for each return period were estimated using the PDS re-

sampling procedure that was employed by Castellano and

DeGaetano (2016).

b. Finding historical analogs

As in Castellano and DeGaetano (2016), target days

(i.e., model days) and candidate analog days (i.e.,

reanalysis days) were compared with one another

by calculating a standardized root-mean-square error

(RMSE) for the following predictor variables over the

208N, 1058W–558N, 508W bounding box: 1) total pre-

cipitable water (TPW), 2) vertically integrated water va-

por transport (IVT), and 3) 850-hPa relative vorticity z850.

These variables were chosen after reviewing existing lit-

erature on the synoptic–dynamic processes and thermo-

dynamic environments that are associated with extreme

precipitation. Cool-season extreme-precipitation events

in midlatitude regions have been linked to synoptic-scale

features such as midtropospheric troughs, extratropical

cyclones, and low-level poleward moisture transport

(Archambault et al. 2008; Junker et al. 2008; Gao et al.

2014; Dayan et al. 2015). Studies byMaddox et al. (1979),

Winkler (1988), and Konrad (1997) found that warm-

season heavy-precipitation events in the central and

eastern United States often occur in regions that are

characterized by warm and moist air near the surface,

high precipitable water, low-level moisture convergence

and warm advection, and an upstream midtropospheric

short-wave trough. Warm-season events with the

strongest synoptic forcing are associated with extra-

tropical cyclones and frontal boundaries. In the absence

of synoptic forcing, heavy convective precipitation in a

conditionally unstable air mass may occur near a mid-

tropospheric ridge or a weak short wave aloft (Maddox

et al. 1979; Heideman and Fritsch 1988; Winkler 1988).

Landfalling tropical cyclones also play an important role

in extreme-precipitation events in the eastern United

States during late summer and early autumn (LaPenta

et al. 1995; Smith et al. 2011; Kunkel et al. 2012).

On the basis of the findings from these studies, the

authors examined several candidate predictor variables,

including mean sea level pressure; geopotential height

and relative vorticity at 850, 700, and 500hPa; 850-hPa

equivalent potential temperature; TPW; and IVT. Tem-

perature advection and moisture convergence were not

included because of the poor representation of these

processes by coarse-scale reanalysis data. Other variables

that may be important for localized convection

in situations that are characterized by conditional in-

stability and weak synoptic forcing (e.g., convective

available potential energy) were also excluded because

the relevant processes cannot be adequately resolved by

present-day GCMs. The combination of z850 (which may

be used to identify cyclones, frontal boundaries, and short

waves aloft), TPW (which may be used to represent

thermodynamic environments that are favorable for

heavy precipitation), and IVT (which may be used to

denote regions of strong moisture transport) was ulti-

mately found to yield the best results in the verification

study conducted by Castellano and DeGaetano (2016).

Predictor fields on the candidate analog days were de-

rived from the NCEP–NCAR reanalysis, which provides

6-hourly gridded atmospheric data at 2.58 3 2.58 horizontal
resolution and 17 vertical pressure levels. Values of TPW,

IVT, and z850 were computed from zonal wind, meridional

wind, and specific humidity fields by using Eqs. (1)–(3):
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Here, u and y are the horizontal and meridional com-

ponents of the total wind v, g is the gravitational

FIG. 2. Box plots showing the widths of the 90% confidence in-

tervals for all 157 stations at different return periods. The dark-gray

box plots represent the confidence intervals computed from a station-

based beta-P approach, whereas the light-gray box plots represent the

confidence intervals computed from the regionalized L-moments

approach. Filled black circles outside the whiskers denote outliers.
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acceleration (9.81m s21), w is the mixing ratio, q is the

specific humidity, and dP signifies integration with respect

to pressure. Predictor fields on the target days were de-

rived from 6-hourly CMIP5model output for the historical

climate scenario (1970–99 period only). The 20 CMIP5

AOGCMs used in this study are listed in Table 1. Before

the predictor variables were computed, the raw CMIP5

data were horizontally regridded and vertically in-

terpolated to match the horizontal and vertical resolution

of the NCEP–NCAR reanalysis data. Because the GHCN

stations typically report daily precipitation as the 24-h

precipitation total ending at 0700 or 0800 local standard

time (LST) on a given day, the predictor fields were only

computed at 0000 UTC on each day.

RMSE values for a given candidate analog day–target

day pair were calculated by taking the square root of the

weighted mean square error across all grid points.

Squared-error values at each grid point were adjusted

by a weighting factor that depends on the proximity of

the grid point to the study domain. As Fig. 3 illustrates,

grid points nearest the study domain received the largest

weighting, whereas grid points farthest from the study

domain received the smallest weighting. Although the

gridpoint-weighting scheme is somewhat arbitrary, this

approach strikes a balance between incorporating a

larger geographical area (necessary for a synoptic-scale

comparison of the predictor variables) and placing an

emphasis on the predictor variables over the study do-

main (Ribalaygua et al. 2013). The RMSE calculation is

given by

RMSE
P
(x

i
, a

j
)5

2
6664
�
N

k51

(P
ik
–P

jk
)2W

k

�
N

k51

W
k

3
7775
1/2

, (4)

where Pik and Pjk represent the value of predictor P on

target day xi and analog day aj, respectively, at grid point k,

Wk is the weighting factor of grid point k, andN is the total

number of grid points. Standardized RMSE values were

estimated by comparing the actual RMSE values with

reference populations of RMSE computed from 1000000

randomly sampled pairs of reanalysis days. The centile

values of the reference populations nearest the actual

RMSEvalueswere located, and the corresponding centiles

(from 0.01 to 0.99) were taken as the standardized error

values for the three predictors. Next, a dissimilarity index

was obtained by calculating the mean of the three stan-

dardized error values from each predictor variable:

d(x
i
, a

j
)5

1

3
�
3

P51

Z
P
(x

i
, a

j
). (5)

Once dissimilarity indices were found for all candi-

date analog days, the candidate analog days with the

30 smallest dissimilarity indices were retained.

c. Estimating precipitation extremes from analogs

After finding the 30 closest historical analogs for a

given target day, one of these analog days was randomly

TABLE 1. Table showing the 20 CMIP5 AOGCMs, the institutions at which they were developed, and their atmospheric horizontal

resolutions (degrees latitude by degrees longitude). The expansions of themodel identifiers can be found online (http://www.ametsoc.org/

Pubsacronymlist).

Model identifier Modeling center/group Resolution

BCC_CSM1.1 Beijing Climate Center, China 2.8 3 2.8

BCC_CSM1.1(m) Beijing Climate Center, China 1.125 3 1.125

BNU-ESM Beijing Normal University, China 2.8 3 2.8

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.8 3 2.8

CCSM4 National Center for Atmospheric Research, United States 0.9 3 1.25

CNRM-CM5 National Centre for Meteorological Research, France 1.4 3 1.4

CSIRO Mk3.6.0 CSIRO, Australia 1.875 3 1.875

GFDL CM3 Geophysical Fluid Dynamics Laboratory, United States 2.0 3 2.5

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, United States 2.0 3 2.5

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, United States 2.0 3 2.5

GISS-E2-H NASA Goddard Institute for Space Studies, United States 2.0 3 2.5

GISS-E2-R NASA Goddard Institute for Space Studies, United States 2.0 3 2.5

IPSL-CM5A-LR L’Institut Pierre-Simon Laplace, France 1.9 3 3.75

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace, France 1.25 3 2.5

IPSL-CM5B-LR L’Institut Pierre-Simon Laplace, France 1.9 3 3.75

MIROC-ESM JAMSTEC/AORI/ National Institute for Environmental Studies, Japan 2.8 3 2.8

MIROC-ESM-CHEM JAMSTEC/AORI/ National Institute for Environmental Studies, Japan 2.8 3 2.8

MIROC5 JAMSTEC/AORI/ National Institute for Environmental Studies, Japan 1.4 3 1.4

MRI-CGCM3 Meteorological Research Institute, Japan 1.125 3 1.125

NorESM1-M Norwegian Climate Centre, Norway 1.9 3 2.5
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selected, and the precipitation observations that are

associated with the selected analog day were used to

guide precipitation estimates on the target day. The

probability of selecting a particular analog day was

quantified as the ratio between the inverse of the dis-

similarity index of the analog day and the inverse sum of

the dissimilarity indices of all 30 of the closest analog

days:

p(x
i
, a

j
)5

[d(x
i
, a

j
)]21

�
30

k51

[d(x
i
, a

k
)]21

. (6)

To translate the analog pattern to station-based pre-

cipitation, the 157 stations were first partitioned into

groups on the basis of how regularly different pairs of

stations received extreme precipitation from the same

meteorological event. For each unique pair of stations,

the fraction of nonconcurrent PDS events [i.e., the

fraction of PDS events at station A that did not occur on

the same day, the previous day, or the next day at station

B (and vice versa)] during the 1961–2010 period was

obtained as a measure of dissimilarity between the two

stations. These dissimilarity measures were used to

construct a 157 3 157 distance matrix, and Ward’s

method of hierarchical clustering (Ward 1963) was ap-

plied to this distance matrix to identify distinct station

groups. Figure 1 shows the five station groups identified

by the clustering algorithm. The robustness of the sta-

tion groups was validated by calculating the within-

cluster dissimilarity (i.e., the mean dissimilarity measure

across all unique station pairs in a given station group)

and the between-cluster dissimilarity for each unique

pair of station groups (i.e., the mean dissimilarity mea-

sure between all stations in one group and all stations in

the second group). As expected, the within-cluster dis-

similarity measures were smaller than the between-

cluster dissimilarity measures.

Next, if extreme precipitation (i.e., a PDS event) oc-

curred on the selected analog day at one or more sta-

tions in a given group, precipitation amounts were

assigned to stations in the group by following the pro-

cedure outlined in Castellano and DeGaetano (2016). If

only one station experienced a PDS event, the corre-

sponding precipitation amount was randomly assigned

on the basis of the percentage of group-specific single-

station PDS events that occurred at each station

during the 1961–2010 period. If more than one station

experienced a PDS event, daily precipitation amounts

were estimated at all stations using the maximum daily

precipitation observation at each station during a 3-day

period centered on the analog day. The largest station-

specific maximum daily precipitation observation was

randomly assigned to one station on the basis of the

percentage of group-specific multistation PDS events

during the 1961–2010 period for which each station re-

ported the largest daily precipitation amount. All re-

maining maximum daily precipitation amounts were

randomly assigned (assuming equal probability) to the

remaining stations. Note that the largest maximum daily

precipitation amount was assigned separately because

the probability of receiving the largest maximum daily

precipitation amount during a group-specific multi-

station PDS event was statistically significant at certain

stations. If extreme precipitation did not occur on the

selected analog day, no precipitation amounts were as-

signed to any stations in the group.

After running through all target days, a new PDS

(hereinafter referred to as the analog PDS) was con-

structed for each station by following the method

employed in section 2a. First, the largest analog pre-

cipitation amounts assigned to a given station were

extracted. If any two of the largest analog precipitation

amounts at a given station were assigned on target days

that are separated by less than seven model days, the

smaller precipitation amount was replaced with the next

largest unused analog precipitation amount assigned

on a target day separated by at least seven days from any

target day already belonging to the station’s analog

PDS. Last, the regionalized L-moments approach was

used to calculate 2-, 5-, 10-, 25-, 50-, and 100-yr return-

period precipitation amounts on the basis of the analog

PDS distributions. The process of randomly selecting

analog days, assigning daily precipitation amounts on

model days, and estimating return-period precipitation

FIG. 3. Map illustrating the weighting factors assigned to the

NCEP–NCAR reanalysis grid points.
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values was repeated 1000 times to minimize the effect of

selecting only one historical analog for each target day.

Medians of the 1000 simulated values were chosen to

represent the final downscaled return-period precipitation

estimates at each station.An overview of the primary steps

in the analog downscaling procedure is illustrated by Fig. 3

in Castellano and DeGaetano (2016).

3. Results

a. Historical-period bias

To determine whether the analog method could pro-

duce realistic estimates of historical precipitation ex-

tremes, return-period precipitation amounts obtained

from the analog method were compared with return-

period precipitation amounts computed from daily

precipitation observations during the 1970–99 period.

Figure 4 shows box plots of ensemble-mean bias in 2-, 5-,

10-, 25-, 50-, and 100-yr precipitation amounts across all

157 stations. Biases of greater or less than 1 indicate that

the mean downscaled value is respectively larger or

smaller than the observed value. Overall, the analog

method yields realistic precipitation estimates at each

return period, with median bias across all stations

ranging from 0.88 to 0.97. Moreover, the percent dif-

ference between downscaled and observed 5-yr (100 yr)

precipitation amounts is less than 20% for 148 (133) of

the 157 stations. Approximately 52% (59%) of the 157

downscaled station values fall within the 90% confi-

dence intervals of the observed 5-yr (100 yr) pre-

cipitation amounts (Table 2). Note that the somewhat

low percentage of downscaled values that fall within the

observed confidence intervals is likely an artifact of

the regionalization procedure. Since the L-moments

method used in this study specifies regionally averaged

(as opposed to single station) shape and scale parame-

ters for all stations in the same region, it generally pro-

duces narrow confidence intervals. To quantify the

uncertainty due to the random selection of analog days,

90% confidence intervals were estimated for each

CMIP5 model by computing the difference between the

5th and 95th percentiles of the 1000 simulated return-

period values. This uncertainty was similar in magnitude

to the intermodel variability in final downscaled return-

period estimates (not shown).

As a basis for comparison, extreme-precipitation

biases were also evaluated for the dynamically down-

scaled CORDEX and NARCCAP simulations. These

simulations consist of regional climate models run at

50-km horizontal resolution and driven by CMIP5

(CORDEX) and CMIP3 (NARCCAP) AOGCMs.

First, daily precipitation amounts were interpolated at

each station by taking a weighted mean of the daily

precipitation output over the four nearest grid cells.

Gridcell weights were determined on the basis of an

inverse-distance-squared relationship. Next, these in-

terpolated daily precipitation estimates were used to

construct a PDS at each station, and the corresponding

return-period values were computed using the re-

gionalized L-moments approach. Last, the simulated

return-period values were adjusted by empirical areal re-

duction factors (ARFs; Allen and DeGaetano 2005) to

convert precipitation averaged over a grid cell to point

values of precipitation. Figure 5 shows box plots of

ensemble-mean bias in ARF-adjusted return-period pre-

cipitation amounts for both sets of dynamically down-

scaled simulations.

In general, the analog method (Fig. 4) and the

CORDEX simulations (Fig. 5a) yield extreme-

precipitation biases that are similar in magnitude.

Whereas the analog method tends to underestimate

observed precipitation extremes by ;5%–10%, the

CORDEX simulations tend to overestimate observed

precipitation extremes by ;5%. The NARCCAP sim-

ulations yield the lowest return-period precipitation

estimates, with median biases ranging from 0.84 to 0.93

(Fig. 5b). Moreover, the NARCCAP simulations con-

sistently underestimate observed precipitation extremes

for at least 75%of the 157 stations. The biases calculated

from the CORDEX simulations exhibit larger station-

to-station variability than those computed from the an-

alog method and the NARCCAP simulations, but this

result is likely due to the limited number of CORDEX

FIG. 4. Box plots illustrating the bias in ensemble-mean extreme-

precipitation amounts as estimated from the analog method for the

1970–99 period at all 157 stations. Filled black circles outside the

whiskers denote outliers.
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simulations. When the downscaled precipitation extremes

are compared with the 90% confidence intervals of ob-

served precipitation extremes, it becomes clear that the

analog method produces the most realistic estimates

(Table 2).

In addition to examining the bias in return-period

precipitation amounts, it was important to compare the

downscaled and observed frequency distributions of

PDS precipitation amounts in each station group. This

procedure was carried out for each model by amassing

all PDS precipitation amounts generated by the 1000

analog simulations at all stations in a given group.

Thus, the corresponding sample size of analog PDS

amounts for a given model and group is 1000 3 n 3 j,

where n is the length of the PDS at each station and j

is the number of stations in that group. The observed

PDS sample for each group simply consists of the

observed PDS amounts at all stations in the group

during the 1970–99 period. After the analog and

observed PDS distributions were constructed, ex-

ceedance probabilities were computed for various

daily precipitation amounts. In this context, ex-

ceedance probability refers to the percentage of PDS

values that exceed a given threshold. These exceed-

ance probabilities are graphically illustrated in

Fig. 6.

In general, the analog method yields extreme-

precipitation distributions that are similar to the

observed extreme-precipitation distributions. Large

differences exist among the individual models, how-

ever, and the performance of the analog method varies

by station group. For instance, whereas the analog PDS

distributions closely mirror the observed PDS distri-

butions in groups 3 and 5 (stations located in the

western and northern sections of the study domain),

the analog method tends to underestimate observed

precipitation extremes in groups 1, 2, and 4 (stations

located farther south and east). Among the group-1

and group-2 stations, which are primarily located in the

Hudson Valley and New York City metropolitan area,

at least 75% of models yield lower-than-observed

exceedance probabilities for daily precipitation of

more than 75mm. Among the group-4 stations, which

are located within the eastern terminus of the

Allegheny Plateau, at least 75% of models yield lower-

than-observed exceedance probabilities for daily pre-

cipitation of more than 50mm. Possible explanations

for these biases will be explored in greater detail in

section 3b.

The monthly distributions of extreme-precipitation

days predicted from the individual model simulations

were compared with the monthly distribution of

observed extreme-precipitation days during the

1970–99 period. From the 1000 simulations, it was

first determined how often extreme precipitation

was predicted on a particular model day. Next, the

probability of extreme precipitation on that model

day was estimated as the fraction of the 1000

FIG. 5. As in Fig. 4, but as estimated from (a) the historical

CORDEX simulations and (b) the historical NARCCAP

simulations.

TABLE 2. Table showing the percentage of stations for which

each downscaling method yielded 5- and 100-yr precipitation

amounts within the 90% confidence interval bounds of the ob-

served precipitation extremes.

Return period Analog method CORDEX NARCCAP

5 yr 52% 43% 37%

100 yr 59% 41% 40%
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simulations for which extreme precipitation was

predicted. Third, the 30-yr monthly frequencies of

extreme-precipitation days were computed by taking

the sum of the extreme-precipitation probabilities for

all dates in each month. Side-by-side comparisons

of the observed and predicted 30-yr monthly

frequencies of extreme-precipitation days during the

1970–99 period for each CMIP5 model are illustrated

in Fig. 7.

The analog method as applied to various CMIP5

models successfully reproduces the observed seasonal

variability in extreme-precipitation days. Each model

FIG. 6. Exceedance probabilities corresponding to observed (black lines) and downscaled (gray box plots) PDS

precipitation amounts during the 1970–99 period. Filled black circles outside the whiskers denote outliers.
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FIG. 7. Histograms illustrating the observed (dark gray) and predicted (light gray)monthly frequency of extreme-precipitation days during

the 1970–99 period.
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predicts a distinct peak in the frequency of extreme pre-

cipitation between June and September, with more than

50%of all extreme-precipitation days occurring during this

4-month period. The monthly and total frequencies of

extreme-precipitation days vary substantially among the

different models, however. For example, the CCSM4

model predicts 267 July extreme-precipitation days and

1344 total extreme-precipitation days during the 1970–99

period, whereas the GISS-E2-H model predicts only

124 July extreme-precipitation days and 734 total extreme-

precipitation days. Although the predicted frequency of

extreme precipitation does not appear to be strongly cor-

related with model resolution, it is worth noting that the

models with intermediate resolutions yield the largest

biases in extreme-precipitation frequency. As Fig. 8 sug-

gests, the analog method as applied to the CMIP5 simu-

lations generally underestimates the observed frequency of

extreme precipitation in all months. This dry bias is most

pronounced in late autumn/early winter (November–

December) and early spring (March–April).

b. Analysis of rarely selected analogs

As the results above indicate, the analog method

tends to underestimate historical precipitation ex-

tremes—in particular, for stations in groups 1, 2, and 4.

The discrepancies between observed and downscaled

precipitation extremes were investigated through a

closer examination of the selection of candidate analogs.

If certain historical synoptic weather patterns are not

reproduced by the AOGCM simulations, it is likely that

the exclusion of such candidate analogs may introduce a

bias in predicted precipitation extremes, especially if

some of the largest precipitation events occur on these

analog days. Such analogs were found by isolating can-

didate analog days with extreme precipitation that were

rarely selected by the CMIP5 models. To qualify as

‘‘rarely selected,’’ a given analog day cannot appear as a

suitable analog (i.e., one of the 30 closest analogs on any

given model day) in more than 4 (20%) of the 20 CMIP5

historical simulations. Overall, 82 unique analog days

spanning the 1961–2010 period met the above criterion.

After the subset of rarely selected analog days was

obtained, the distribution of PDS precipitation amounts

reported on these analog days was compared with the

distribution of all PDS precipitation amounts during the

1970–99 period. The comparison was carried out for

each station group, as well as the entire study domain.

As Fig. 9 illustrates, the PDS precipitation amounts

from the subset of rarely selected analog days are gen-

erally larger than the PDS precipitation amounts from

all extreme-precipitation days during the 1970–99 pe-

riod. These differences are especially pronounced in

groups 1, 2, and 4. For example, among the group-1 and

group-2 stations, roughly 40% of PDS precipitation

amounts on rarely selected analog days exceed 100mm,

whereas only 15%–20% of PDS precipitation amounts

on all extreme-precipitation days during the 1970–99

period exceed 100mm. Among the group-4 stations,

nearly 50% of PDS precipitation amounts on rarely se-

lected analog days exceed 75mm, whereas only 15% of

PDS precipitation amounts on all extreme-precipitation

days during the 1970–99 period exceed 75mm.

Of the 82 rarely selected analog days, nearly all (80) fell

between June and October, with a distinct maximum (36)

in September. This period coincides with the most active

portion of the tropical-cyclone season in the Atlantic

Ocean, suggesting that landfalling tropical cyclones (TCs)

may be a common feature among the rarely selected an-

alogs. A recent study by Kunkel et al. (2012) found that

precipitation associated with TCs accounted for 35% of

summer (June–August) 1-day 5-yr precipitation events

and 44% of autumn (September–November) 1-day 5-yr

precipitation events in the northeastern United States be-

tween 1908 and 2009. Moreover, given their relative

proximity to the coast, stations in groups 1, 2, and 4 are

generally more vulnerable to heavy precipitation associ-

ated with Atlantic TCs than stations in groups 3 and 5 are.

To investigate the types of historical synoptic weather

patterns associated with extreme precipitation that are not

adequately replicated by the CMIP5 models, synoptic

composite maps were created for the 82 rarely selected

analog days. Before generating the composites, the 82 in-

dividual analog days were partitioned into clusters on the

basis of similarities in the TPW, IVT, and z850 fields. To be

more specific, standardized RMSE values were calculated

FIG. 8. Monthly bias in the frequency of extreme-precipitation

days as predicted by the analog method during the 1970–99 period.

Filled black circles outside the whiskers denote outliers.
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for all unique pairs of analog days using the same method

that was described in section 2b. Next, these standardized

RMSE values were used to construct a distance matrix,

and Ward’s method of hierarchical clustering was sub-

sequently applied to the resulting distance matrix. Eight

distinct synoptic clusters were identified.

Supplemental storm-track, satellite, precipitation, and

radar data were employed to elucidate the role of

TCs and other meteorological causes of extreme pre-

cipitation [extratropical cyclones, fronts, mesoscale

convective systems (MCSs), etc.] on these analog days.

For the purpose of this study, the following four

FIG. 9. Exceedance probabilities corresponding to all PDS precipitation amounts during the 1970–99 period (black

lines) and the subset of PDS precipitation amounts on rarely selected analog days (gray lines).
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categories were used to describe the meteorological

cause of extreme precipitation on a given analog day:

1) precipitation directly or indirectly associated with a

TC or posttropical cyclone (PTC), 2) precipitation as-

sociated with extratropical cyclones and/or frontal

boundaries, 3) precipitation associated with MCSs, and

4) precipitation associated with airmass convection. The

first category includes predecessor rain events (PREs;

Cote 2007), as well as PTCs that have either undergone

extratropical transition or become remnant lows within

the previous 24 h. The last category refers to isolated or

widely scattered convection occurring in an unstable

air mass in the absence of a frontal boundary or surface

cyclone. The existence of a TCwithin the analog search

domain on a given day was verified using the In-

ternational Best Track Archive for Climate Steward-

ship (IBTrACS) database (Knapp et al. 2010).

Interpolated daily precipitation maps (provided by

the Northeast Regional Climate Center), archived

NEXRAD images (provided by the Iowa Environ-

mental Mesonet), and archived geostationary satellite

images (provided by the National Climatic Data Cen-

ter, now known as the National Centers for Environ-

mental Information) gave us valuable information

about the intensity, type (i.e., convective vs stratiform),

and spatial pattern of precipitation.

Figures 10 and 11 show synoptic composite maps for

each of the eight clusters of rarely selected analog days.

The cluster-1 composites (number of members n 5 11)

depict an 850-hPa ridge over the southeastern United

States, with a large region of westerly moisture transport

extending across the midwestern and northeastern

United States (Fig. 10a). A weak surface cyclone is lo-

cated over Lake Superior, just downstream of a posi-

tively tilted 850-hPa short-wave trough (Fig. 11a).

Extreme precipitation on these analog days was pri-

marily associated with airmass convection, an MCS, or

organized convection in the warm sector of an extra-

tropical cyclone. The cluster-2 composites (n 5 17)

show a similar pattern, but the 850-hPa ridge is located

farther east and the short-wave trough near the Canada–

U.S. border is neutral and more amplified (Fig. 10b).

The resulting southwesterly low-level flow transports

moist air from the lower Mississippi and Ohio Valleys

into the Great Lakes states and helps to establish a

thermal ridge over southeastern Canada via warm ad-

vection.Meanwhile, a potent warm-season extratropical

cyclone is located over southern Canada (Fig. 11b).

Extreme precipitation on these analog days was pri-

marily associated with airmass convection and orga-

nized convection in the warm sector of an extratropical

cyclone. One unique feature of the cluster-2 composites

is a local maximum in TPW near the Florida Panhandle.

Upon further inspection, 12 of the 17 analog days in

cluster 2 featured a TC located over the northernGulf of

Mexico or the Gulf Coast states.

The cluster-3 composites (n5 5) are characterized by

an intense 850-hPa cutoff low and associated surface

cyclone centered over Lake Ontario (Figs. 10c and 11c).

The surface cyclone is located near the poleward exit

region of a 300-hPa jet streak. An extensive ring of cy-

clonically curved IVT surrounds the 850-hPa cutoff low,

with pronounced meridional moisture transport along

its eastern periphery. Extreme precipitation on these an-

alog days was associated with strong extratropical cyclones

and landfalling TCs undergoing extratropical transition

[Agnes (1972)]. The cluster-4 composites (n5 10) depict a

broad 850-hPa trough over the upper Midwest and a pro-

nounced 850-hPa ridge and surface anticyclone over the

Canadian Maritime Provinces (Figs. 10d and 11d). A re-

gion of enhanced meridional moisture transport parallels

the Appalachian Mountains in advance of a tongue of

moist air extending northward from the southeastern

United States. This region of enhanced IVT terminates

near the equatorward entrance region of a 300-hPa jet

streak over southeastern Canada, placing the northeastern

United States in a favorable location for quasi-geostrophic

(QG) forcing for ascent. Extreme precipitation on these

analog dayswas primarily associatedwithPREs, organized

convection in the warm sector of an extratropical cyclone,

and frontal passages.

The cluster-5 composites (n 5 9) are characterized

by an 850-hPa cutoff low near the South Carolina

coast, a strong anticyclone over the northwestern

Atlantic Ocean, and a region of vigorous poleward

moisture transport between those two features

(Fig. 10e). The 850-hPa cutoff low is collocated with

a closed circulation in the sea level pressure (SLP) field

and lies just west of a nearly symmetrical region of very

moist air (TPW values approaching 60mm; Fig. 11e).

Upon further inspection, 6 of the 9 analog days in

cluster 5 featured a landfalling TC along the Atlantic

coast of the southeastern United States [David (1979),

Gloria (1985), Hugo (1989), Floyd (1999), Hannah

(2008), and Nicole (2010)]. Extreme precipitation

on these analogs days was primarily associated with

PREs or the TCs themselves. The cluster-6 composites

(n 5 13) show an 850-hPa short-wave trough and

associated weak surface cyclone over the eastern

United States (Figs. 10f and 11f). A region of enhanced

IVT is coincident with a tongue of moist air extending

northward along the East Coast. Extreme precipi-

tation on these analog days was primarily associ-

ated with landfalling TCs that were undergoing

extratropical transition and the remnants of land-

falling TCs.
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FIG. 10. Composite maps of TPW (shaded; every 4mm), 850-hPa geopotential height (contours;

every 6 dam), and IVT (arrows; values $250 kgm21 s21 only) for each of the eight clusters of rarely

selected analog days.
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FIG. 11. Composite maps of 300-hPa scalar wind speed (shaded; every 5m s21), mean SLP (solid

contours; every 2 hPa), and 1000–500-hPa thickness (dashed contours; every 6 dam) for each of the eight

clusters of rarely selected analog days.
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The cluster-7 composites (n 5 9) depict an 850-hPa

short-wave trough and a weak area of surface low

pressure over the Great Lakes states (Figs. 10g and 11g).

A region of strong meridional moisture transport ex-

tends from the western Caribbean Sea northward to

Florida, but themagnitude of IVT over the northeastern

United States is notably weaker than in the previous

composites. Extreme precipitation on these analog days

was primarily associated with PREs and extratropical

cyclones over the Great Lakes region. The cluster-8

composites (n 5 8) are characterized by an 850-hPa

cutoff low over the eastern Gulf Coast states and a large

swath of pronounced moisture transport extending from

Florida to the Canadian Maritimes (Fig. 10h). The

850-hPa cutoff low is collocated with a region of ex-

tremely moist air (TPW values approaching 60mm)

and a closed circulation in the SLP field, which suggests

that a TC has recently made landfall near the Florida

Panhandle. North of the TC, a 300-hPa jet streak over

southeastern Canada places the eastern Great Lakes

states in a favorable region for QG forcing for ascent

(Fig. 11h). Upon further inspection, 6 of the 8 analog

days in cluster 8 featured a landfalling TC in the

southeastern United States [Opal (1995), Isidore (2002),

Frances (2004), Ivan (2004), and Katrina (2005)]. Ex-

treme precipitation on these analog days was either di-

rectly or indirectly (i.e., a PRE scenario) related to the

landfalling TC.

Overall, 55 (67%) of the 82 rarely selected analog

days featured a TC within the analog search domain.

This number includes TCs located over the northwest-

ern Atlantic Ocean or the Gulf of Mexico, as well as

landfalling TCs in the central and eastern United States.

An additional 6 analog days featured PTCs that either

underwent extratropical transition or dissipated into

remnant lows during the previous 24 h. As Fig. 12 illus-

trates, certain models are more likely to reproduce

synoptic patterns associated with rarely selected analog

days than others. For instance, more than 25% of rarely

selected analog days appear as suitable analogs when the

analog search algorithm is run for the BCC_CSM1.1,

CCSM4, IPSL-CM5B-LR, and MRI-CGCM3 models.

Meanwhile, fewer than 5% of rarely selected analog

days appear as suitable analogs when the analog search

algorithm is run for the BNU-ESM, GFDL-ESM2G,

GFDL-ESM2M, IPSL-CM5A-LR, IPSL-CM5A-MR,

and NorESM1-M models. The likelihood of reproduc-

ing rarely selected analog patterns does not appear to be

strongly correlated with model resolution. When the

rarely selected analog days are partitioned into days

with and without a TC in the analog search domain, it

becomes clear that certain models are less likely to re-

produce analog patterns associated with TC days than

those associated with non-TC days (e.g., CCSM4), and

vice versa (e.g., IPSL-CM5B-LR).

Not surprising is that TCs and PTCs were the leading

meteorological cause of extreme precipitation on rarely

selected analog days. Extreme precipitation occurring on

39% of rarely selected analog days could be directly or

indirectly (i.e., a PRE scenario) attributed to a TC or PTC.

Extratropical cyclones and frontal boundaries were asso-

ciated with extreme precipitation on 34% of rarely se-

lected analog days. In these cases, extreme precipitation

FIG. 12. Bar plots showing the percentage of rarely selected analog

days that appear as suitable analogs for each CMIP5 model.
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resulted primarily from organized convection in the warm

sector of the surface cyclone or along an associated cold

front. Airmass convection and MCSs were responsible for

extreme precipitation on 12% and 7% of rarely selected

analog days, respectively. Extreme precipitation on the

remaining analog days was associated with remnant

moisture from previously existing TCs.

4. Conclusions

This study evaluates a multistep approach for down-

scaling daily precipitation extremes from AOGCM

simulations using historical analogs. Unlike most analog

downscaling techniques, this method estimates daily

precipitation amounts only on model days for which the

closest historical analogs predict the occurrence of ex-

treme precipitation. Overall, the analog method yields

realistic estimates of historical precipitation extremes

and compares favorably to the dynamically downscaled

CORDEX and NARCCAP simulations.

One advantage of this downscaling approach is that it

can be used to assess the ability ofAOGCMs to replicate

synoptic weather patterns that are commonly associated

with extreme precipitation. For instance, the composite

analysis of rarely selected analogs revealed that TCs

were a prominent feature on rarely selected analog days.

This result is consistent with previous studies, which

have demonstrated that coarse-scale AOGCMs struggle

to adequately simulate TC activity in the North Atlantic

basin (Camargo 2013; Walsh et al. 2013). Given these

shortcomings, it may be worthwhile to investigate

whether applying the analog method to high-resolution

climate models can reduce biases in simulated weather

patterns and downscaled precipitation extremes. Recent

studies by Knutson et al. (2013) and Mei et al. (2014)

suggest that increasing model resolution alone can in-

deed yield promising results with respect to simulating

Atlantic TC activity. Another advantage of the analog

method is that it can offer insights as to how the fre-

quency distribution of synoptic weather patterns asso-

ciated with extreme precipitation may change in the

future. By extension, changes in simulated large-scale

circulation patterns and/or moisture variables could

provide a physical basis for explaining projected changes

in extreme precipitation.

Any conclusions drawn from applications to historical

and future climate-model simulations must acknowl-

edge several important caveats. First, although the

analog method may produce realistic estimates of his-

torical precipitation extremes, there is no guarantee that

the synoptic weather patterns associated with extreme

precipitation are replicated well by the models. Second,

the meteorological causes of extreme precipitation vary

by region, and the predictor variables must therefore be

chosen accordingly. Analog predictors that are well

suited to the northeastern United States may not be

appropriate in other regions such as the southwestern

United States or Central America. Third, this particular

downscaling procedure only estimates precipitation on

days for which the selected historical analog day is an

extreme-precipitation day. Therefore, unlike other sta-

tistical downscaling methods, it is not possible to eval-

uate certain metrics of daily precipitation variability,

such as wet-day fraction, spatial autocorrelation, and

temporal autocorrelation [see Gutmann et al. (2014)

and He et al. (2016) for examples of how these metrics

are typically evaluated]. Fourth, as is the case with any

statistical downscaling approach, the analog method

relies on the assumption of stationarity. This assumption

may be rendered invalid if the meteorological forcing

and/or atmospheric conditions associated with extreme

precipitation change over time. Last, because the analog

method uses historical precipitation observations, future

precipitation extremes will ultimately be constrained by

the existing climate record. Increases in return-period

values can only result from a resampling of observed

precipitation amounts, potentially leading to an un-

derestimation of changes in the upper tail of the

extreme-precipitation distribution (Boé et al. 2006).
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